Thermochimica Acta, 92 (1985) 775-778 Elsevier Science Publishers B.V., Amsterdam

THERMIC STUDIES OF THE RARE EARTH ELEMENT COORDINATION

COMPOUNDS WITH THIOSEMICARBAZIDEDIACETIC ACID

N.V.Gerbeleu, V.Ya.Ivanova, V.I.Lozan, O.A.Bologa

Moldavian Academy of Sciences Institute of Chemistry

Kishinev, USSR

ABSTRACT

The thermogravimetric investigation of rare earth elements coordination compounds with tetradentate tripod ligand, containing N,0,0,N donor atoms - thiosemicarbazidediacetic acid (H₂L) of the composition Na [InL₂]·3H₂O and InLX·4H₂O. The thermit decomposition of complexes proceeds in two stages: at 40-130°C proceeds their one step dehydratation and at 185-250°C takes place exothermic destruction of complexes.

INTRODUCTION

Thiosemicarbazidediacetic acid H_N-C(S)-NH-N(CH_COOH)

(H₂L) concerns to polydentate polyfunctional ligands of complexon type. Combination of carboxilic and thiosemicarbazidic branches communicates to H₂L the properties of carboxilate and thiosemicarbazide ligands. Having the possibility to use for coordination sulphur atom, amine group nitrogen and the hydrazine rest nitrogen atoms and the oxigen atom of carboxilic groups and being extremly flexible ligand H₂L gives complexes with a majority of periodic system of elements. H₂L forms with rare earth elements some types of coordination compounds of the composition Na[LnL₂]. 3H₂O (1) and LnLX·4H₂O (II), where Ln = La, Pr, Nd, Sm, Eu, Gd, Ho, Er; X = Cl, Br, OH in which H₂L is coordinated as tetradentate N.0.0.N - ligand [1-3].

RESULTS AND DISCUSSION

By TG and DTA methods it was established the compounds of type II to be characterised with lowtemperature ($\sim 40-130^{\circ}$ C) endothermic effects, which proceed in one stage independently from the heating rate and exothermic in the region 185-250°C (Fig) The dehydratation process proceeds by mean of solid phase of variable composition formation without a structural recombination of

Proceedings of ICTA 85, Bratislava

solid complexes. The maximal development of the dehydratation process proceeds at $\sim 90^{\circ}$ C. A complete dehydratation is reached only at 200-240°C, i.e. before the intense development of exothermic effect of the complex destruction.

Table. The results of thermic analysis of the rare earth element with $H_{\rm p}L$

	Dehydratation stage			Exothermic decomposito-	
Element	temper. inter- val,t,°C	t of DTA, C	t of comp- lete dehy- dratation	temper. inter. val t ^o , C	t of DTA pear, °C
InLC1·4H ₂ 0					
La	35-170	90	170	205 245	227
Ce	30 -1 60	93	160	197– 240	223
\Pr	32-160	97	207	200-240	222
Nđ	45-122	92	210	1 95 - 240	222
Sm	45 -1 22	87	200	195–2 40	222
Eu	45 -1 32	95	210	200-240	227
Gđ	45 -1 20	85	200	205 2 45	227
Ho	35-160	93	160	200-245	225
Er	45-135	92	180	200+255	228
		L.	LOH • 4H ₂ 0		
La	40 1 35	95	203	175-225	203
Pr	4 51 30	1 05	225	175-225	205
Nd	35–1 50	90	150	185-237	217
Sm	45-130	95	210	175-230	210
Eu	35-120	90	215	190-300	245
Gđ	30 140	90	200	185 - 235	212
Ho	45-130	92	240	180 - 230	210
Er	45-117	87	212	155-240	212
Y	45–135	93	200	160-2 40	220

Fig. The curves of thermic analysis a - NdLC1.4H₂0 b - NdC1.6H₂0 c - NdLOH.4H₂0 d - H₂L

The thermogramms of studied complexes differ from the thermogrammes of the initial compounds - rare earth salts and thiosemicarbazidediacetic acid (Fig.). The latter on heating melting at $180-185^{\circ}C$ with decomposition, while the coordination compound is distructed at a higher temperature with exothermic peak at $220-225^{\circ}C$. Exothermic decomposition of hydroxocomplexes proceeds at some lower temperature (~ $180^{\circ}C$), than of chlorocomplexes (~ $200^{\circ}C$) and is less intensive. Introduction of hydroxile in the complex instead of Cl-ion lowers the distruction temperature of the comlex. On changing of Cl-ion for Br-ion the character of decomposition and the temperature intervals of the thermic transformations don't change. A temperature dehydratation and the further thermolysis don't depend on the ordinal number of rare earth element.

CONCLUSIONS

The thermic decomposition of crystallohydrates has a stepped character and encludes the followings stages: monostepped dehydration and the thermic decomposition of the complex coordination sphere. The dehydratation proceeds in a wide of temperature interval (from ~ 40 to $2'10^{\circ}$ C and nigher) (see table). Elimination of last portions of water involves the decomposition of complex compound with elimination of the ligand and subsequent its de sintegration.

The thermic stability of compound was studied on the derivatograph of Paulic-Paulic-Erday system to 300°C in the air atmosphere.

REFERENCES

N.V.Gerbeleu, M.A.Tischenko et al. Zh.neorg.Khim.28 (1983) 335
T.A.Babushkina, O.A.Bologa et al. Zh.neorg.Khim. 29 (1984)2492.
I.V.Bezlutskaya, M.A.Tischenko et al. Zh.koord.Khim. 9 (1983) 777.